A requirement for membrane cholesterol in the beta-arrestin- and clathrin-dependent endocytosis of LPA1 lysophosphatidic acid receptors.

نویسندگان

  • Nikhil M Urs
  • Kymry T Jones
  • Paul D Salo
  • Jamie E Severin
  • Joann Trejo
  • Harish Radhakrishna
چکیده

Lysophosphatidic acid (LPA) stimulates heterotrimeric G protein signaling by activating three closely related receptors, termed LPA(1), LPA(2) and LPA(3). Here we show that in addition to promoting LPA(1) signaling, membrane cholesterol is essential for the association of LPA(1) with beta-arrestin, which leads to signal attenuation and clathrin-dependent endocytosis of LPA(1). Reduction of clathrin heavy chain expression, using small interfering RNAs, inhibited LPA(1) endocytosis. LPA(1) endocytosis was also inhibited in beta-arrestin 1 and 2-null mouse embryo fibroblasts (beta-arrestin 1/2 KO MEFs), but was restored upon re-expression of wild-type beta-arrestin 2. beta-arrestin attenuates LPA signaling as LPA(1)-dependent phosphoinositide hydrolysis was significantly elevated in beta-arrestin 1/2 KO MEFs and was reduced to wild-type levels upon re-expression of wild-type beta-arrestin. Interestingly, extraction of membrane cholesterol with methyl-beta-cyclodextrin inhibited LPA(1) signaling, beta-arrestin membrane recruitment and LPA(1) endocytosis. Cholesterol repletion restored all of these functions. However, neither the stimulation of phosphoinositide hydrolysis by the M(1) acetylcholine receptor nor its endocytosis was affected by cholesterol extraction. LPA treatment increased the detergent resistance of LPA(1) and this was inhibited by cholesterol extraction, suggesting that LPA(1) localizes to detergent-resistant membranes upon ligand stimulation. These data indicate that although LPA(1) is internalized by clathrin- and beta-arrestin dependent endocytosis, membrane cholesterol is critical for LPA(1) signaling, membrane recruitment of beta-arrestins and LPA(1) endocytosis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of arrestins in endocytosis and signaling of alpha2-adrenergic receptor subtypes.

We investigated the role of arrestins in the trafficking of human alpha2-adrenergic receptors (alpha2-ARs) and the effect of receptor trafficking on p42/p44 MAP kinase activation. alpha2-ARs expressed in COS-1 cells demonstrated a modest level of agonist-mediated internalization, with alpha2c > alpha2b > alpha2a. However, upon coexpression of arrestin-2 (beta-arrestin-1) or arrestin-3 (beta-arr...

متن کامل

Agonist-induced endocytosis of lysophosphatidic acid-coupled LPA1/EDG-2 receptors via a dynamin2- and Rab5-dependent pathway.

Lysophosphatidic acid (LPA) is a serum-borne phospholipid that exerts a pleiotropic range of effects on cells through activation of three closely related G-protein-coupled receptors termed LPA1/EDG-2, LPA2/EDG-4 and LPA3/EDG-7. Of these receptors, the LPA1 receptor is the most widely expressed. In this study, we investigated the agonist-induced endocytosis of the human LPA1 receptor, bearing an...

متن کامل

Histamine H2 receptor trafficking: role of arrestin, dynamin, and clathrin in histamine H2 receptor internalization.

Agonist-induced internalization of G protein-coupled receptors (GPCRs) has been implicated in receptor desensitization, resensitization, and down-regulation. In the present study, we sought to establish whether the histamine H2 receptor (H2r) agonist amthamine, besides promoting receptor desensitization, induced H2r internalization. We further studied the mechanisms involved and its potential r...

متن کامل

Dual roles for RHOA/RHO-kinase in the regulated trafficking of a voltage-sensitive potassium channel.

Kv1.2 is a member of the Shaker family of voltage-sensitive potassium channels and contributes to regulation of membrane excitability. The electrophysiological activity of Kv1.2 undergoes tyrosine kinase-dependent suppression in a process involving RhoA. We report that RhoA elicits suppression of Kv1.2 ionic current by modulating channel endocytosis. This occurs through two distinct pathways, o...

متن کامل

Beta-arrestin/Ral signaling regulates lysophosphatidic acid-mediated migration and invasion of human breast tumor cells.

The lipid mediator lysophosphatidic acid (LPA) plays a role in cancer progression and signals via specific G protein-coupled receptors, LPA(1-3). LPA has been shown to enhance the metastasis of breast carcinoma cells to bone. However, the mechanisms by which LPA receptors regulate breast cancer cell migration and invasion remain unclear. Breast cancer cell proliferation has been shown to be sti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cell science

دوره 118 Pt 22  شماره 

صفحات  -

تاریخ انتشار 2005